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Abstract-Analyses are given for the evolution of liquid-phase mass fraction profiles and temperature 
during combustion of fuel droplets composed of binary miscible mixtures of low-volatility and high- 
volatility constituents, with small initial mass fractions of the tow-volatility material, or slow introductioh 
of low-volatility material into the liquid phase by absorption from the gas phase. The gas phase is assumed 
to remain quasisteady and the Liquid temperature spatially uniform. The ratio of the liquid-phase diffusion 
coefficient to the initial burning-rate constant is treated as a small parameter. Asymptotic analyses in 
this parameter are developed, and the conservation equations are integrated numerically in obtaining 
descriptions of the combustion history. It is shown that at the surface of the droplet a boundary layer 
arises in which the mass fraction of the low-volatility component increases with time. The results are used 
to explain qualitatively some observed conditions of game contraction and liquid disruption in droplet 

combustion. 

1. INTRODUCTION 

INFLUENCES of liquid-phase diffusion and volatility 
differences on the vaporization and combustion 
behavior of multicomponent droplets have been the 
subject of various theoretical, numerical, and exper- 
imental investigations because of their potential 
importance to the. efficient utilization of fuel sprays as 
well as their fundamental interest. The earliest studies 
on multicomponent droplet combustion hypothesized 
that droplet combustion is a batch distillation process 
[I, 21. However, more recent analyses have shown that 
liquid-phase diffusion can be important for situations 
in which significant volatility differences exist between 
fuel components, and where surface regression rates 
are fast compared with liquid-phase species diffusion 
rates. For example, Landis and Mills [3] report the 
results of numerical analyses concerning the spher- 
ically-symmetric evaporation (without combustion) 
of binary fuel droplets, demonstrating the effects of 
slow liquid-phase diffusion and vo!atiIity differentials. 
Results of similar numeri~ai analyses are reported by 
Law [4]. Numerical analyses for binary fuel evap- 
oration with and without combustion are also pre- 
sented by Law and co-workers [S, 61, while exper- 
imental work in this area has also been active [i-IO]. 

These analyses have been primarily concerned with 
the spherically-symmetric low-Reynolds-number 
evaporation and combustion of droplets. The results 
of these analyses have demonstrated, for binary fuel 
droplets with suflicientiy different voiatilities, that an 
initial transient period exists during which the more 
volatile component is preferentially evaporated, caus- 
ing the droplet surface to regress. Surface regression, 

when sufficiently rapid, causes a ‘boundary layer’ of 
the less volatile component to develop near the droplet 
surface, increasing the mass fraction of the less volatile 
component at the droplet surface. For combustion 
(or evaporation in a hot environment) the droplet 
surface seeks to remain near the boiling temperature 
of the mixture at the surface. Hence, as the surface 
mass fraction of the less volatile component increases, 
the droplet surface temperature rises, increasing the 
evaporation rate of the less volatile component. This 
droplet heating has been shown to occur quite sud- 
denly and rapidly after a period of d-square-law sur- 
face regression [5,7] (the square of the droplet diam- 
eter decreasing linearly with time), causing reductions 
in flame diameters [SJ as a result of reduced vapo- 
rization rates while heating occurs. Flame contraction 
is followed by flame growth, with another d-square- 
law period then possibly appearing, which may 
be terminated by disruption or extinction, or pos- 
sibly by a batch distillation combustion regime [4]. 
The second d-square-law period is characterized by 
suffi~~tiy vigorous evaporation of the less volatile 
component to prevent further buildup of its surface 
mass fraction. Since, in the situation described, chemi- 
cal stratification within the droplet has occurred, the 
droplet interior may experience nucleation of the more 
volatile mixture if the droplet surface temperature is 
sufficiently high. 

The analysis in this paper presents a parametric 
study concerned primarily with the early-time com- 
bustion behavior of fuel droplets containing a volatile 
component (termed in this paper ‘fuel’) and a miscible 
but low-volatility component (sometimes called an 
‘impurity’), where ‘early time’ here means prior to the 
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NOMENCLATURE 

A dimensionless parameter defined after Greek symbols 
equation (4) % coupling function variable defined in 

B transfer number hppendix A 

b, dimensionless parameter defined after LX,, I? dimensionless reciprocal temperatures 
equation (5) defined after equation (4) 

CP gas-phase specific heat P dimensionless parameter defined after 

C, liquid-phase specific heat equation (5) 
D liquid-phase species diffusivity B’ scale factor between r and r’ time scales 
d droplet diameter E inverse Peclet number, 813, K 
E dimensionless parameter defined after I mass flux fraction 

equation (19) 0 non-dimensional temperature 

f dimensionless gas-phase radial /. thermal conductivity 
coordinate defined in equation (A4) V chemical coefficient 

G dimensionless measure of droplet Pi liquid density 
burning rate defined by equation (19) 7 non-dimensional transfo~ed time 

g, fr, J transformed liquid-phase mass fraction defined before equation (5) 
variables 7’ resealed non-dimensional transformed 

ho enthalpy of formation time defined after equation (22) 
K burning-rate constant y7 resealed non-dimensional transformed 
z. vaporization enthalpy time defined after equation (8) 
& droplet vaporization rate R coupling function defined in 
P pressure Appendix A 

‘I chemical heat release w ratio of fuel molecular weight to 
R gas constant impurity molecular weight. 
F radial coordinate 

rl droplet radius Subscripts 
T temperature b boiling 
t time c critical 

fb droplet burn time F fuel 
i non-dimensional time defined in H impurity 

Section 3 I gas-phase inert species 
V droplet volume ii ith or jth species 
W molecular weight 0 oxidizer 
X mole fraction pi ith product 
.Y dimensionless liquid-phase radial SS steady state 

coordinate defined before 0 initial condition 
equation (6) f condition of gas side of gas-liquid 

Y,J mass fraction interface 
: stretched liquid-phase radial condition on liquid side of gas-liquid 

coordinate defined before interface 
equation (7). X condition at infinity. 

above-mentioned flame contraction. The combustion 
behaviors of individua1 droplets wit1 be studied ; drop- 
let interactions which may arise, for example, in dense 
sprays, are not considered. Approximate analyses will 
be presented to estimate the effects of liquid-phase 
species diffusion on the combustion behavior. The 
transient buildup of impurity profiles in droplets will 
be analyzed asymptoti~alIy and numerically under the 
assumptions that a quasisteady gas phase is present 
and that spherical symmetry exists in the liquid and 
gas phases. 

Motivation for this work stems partfy from the 
results of recent reduced-gravity combustion exper- 

iments in which multicomponent droplet behavior of 
the type described above was observed during the 
combustion of reasonably pure n-decane [ll] or 
impure n-heptane [12] droplets. In these experiments, 
unsupported fuel droplets were observed to exhibit an 
initial period of approximately d-square-law com- 
bustion, followed by sudden flame contraction and 
then growth. and sometimes disruption. It has been 
suggested that this behavior can be attributed to the 
presence of one or more miscible, low-volatiiity 
impurities in the liquid phase, causing the type of 
multicomponent behavior discussed earlier. These 
impurities may have been initially present, or they 
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may have returned to the droplet from the gas phase 
as a result of fuel pyrolysis. Both types of impurity 
sources will be addressed here. Through parametric 
studies of the present type, ranges of conditions for 
the occurrence of the different types of observed 
behavior can be delineated with greater precision. 

Three analyses concerning an initially present 
impurity will be presented. The first will be a numeri- 
cal integration of the conservation equations for the 
case of an n-decane droplet undergoing combustion. 
This analysis will demonstrate that conditions may 
exist such that surface regression approximately fol- 
lows the d-square-law until the surface mass fraction 
of impurity becomes of the order of unity, after which 
d-square-law surface regression is no longer approxi- 
mately followed. The second analysis will be con- 
cerned with the evolution of impurity mass fraction 
profiles within a droplet with the assumption that 
surface regression follows d-square-law behavior. 
This analysis is needed for determining when the sur- 
face mass fraction of impurity approaches unity, sig- 
nalling that d-square-law surface regression is no 
longer maintained (e.g. when flame contraction 
through droplet heating begins). The third analysis 
will consider non-d-square-law droplet combustion 
related to droplet heating. All of these analyses will 
assume that impurity vaporization is negligible. Esti- 
mates regarding conditions under which this assump- 
tion is valid will be presented. 

Analyses addressing the possibility of low-volatility 
impurities returning from the gas phase to the liquid 
phase will be presented for the purpose of identifying 
conditions under which combustion behavior may be 
significantly influenced by the returning impurities. 
These analyses parallel those described above, but 
with altered boundary conditions. 

In all analyses, liquid-phase heat conduction is 
assumed to be sufficiently rapid that temperature pro- 
files in the liquid phase are spatially uniform but time 
varying. This permits a significant simplification in 
the equations describing the droplet combustion. A 
partial justification for this assumption is that pre- 
vious investigators have shown that transient droplet 
heating effects on vaporization rates can be 
adequately modeled in this manner for many single- 
component fuels [13]. Since vaporizing multi- 
component droplets have approximately the same 
liquid-phase thermal diffusivities as single-component 
fuels, it may be conjectured that this approximation 
will remain equally useful. For accurate analysis of 
disruption events, however, thermal gradients in the 
liquid phase may need to be considered. The present 
work does not specifically address disruption but 
focuses instead on vaporization rates of droplets. 

2. FORMULATION 

Consider a droplet with a miscible impurity of very 
low volatility that is undergoing spherically-sym- 
metric combustion. The temperature at the droplet 

surface will tend to approach closely the equilibrium 
boiling temperature of the mixture at the surface. 
Hence, for the situation in which impurity is present 
at the surface in small amounts, the surface tem- 
perature will be near that of the boiling point of the 
high-volatility fuel constituent (under steady con- 
ditions). As the fuel vaporizes, the droplet surface 
regresses, causing the mass fraction of impurity to 
increase if impurity vaporization is sufficiently weak. 
Conditions for neglecting impurity vaporization will 
be discussed later. Increases of impurity mass fraction 
at the droplet surface lead to increases in the droplet 
surface temperature. 

With the assumption that thermal gradients within 
thedroplet are negligible, formally derivable by taking 
the limit of infinite ratio of liquid to gas thermal 
conductivity, the energy equation for the liquid phase 
is 

(1) 

subject to the initial condition T(0) = To, where c,. is 
the specific heat of the liquid, I-, the droplet radius, p, 
the liquid density, T the temperature, L the enthalpy 
of vaporization per unit mass, I the time, and i. the gas- 
phase thermal conductivity. When multiple species are 
entering or leaving the liquid phase, L can be assumed 
to be given by L = Zi &Li where $ is the mass-flux 
fraction of the ith species, and Li the vaporization 
enthalpy of the ith species. Throughout this paper c, 
and p, are assumed constant. The subscript + denotes 
that the quantity in question is evaluated on the gas 
side of the liquid-gas interface. 

For a quasisteady gas phase, it is shown in Appen- 
dix A that the temperature gradient on the gas side of 
the liquid-gas interface can be approximately evalu- 
ated in terms of physicochemical properties and the 
dimensionless burning rate f (see equation (A7)) 
yielding 

PIW, ,dT 
-r~ dt= /[A - I], T(0) = T, (2) 3i.L 

where cP is the gas-phase specific heat, and 
B = [c,(T,- T)+qYo.,/(voWo)]/L is a transfer 
number. When f is constant, droplet surface 
regression follows the d-square-law. Here, T, and 
Year are the ambient temperature and oxidizer mass 
fractions, respectively, and q/(vo W,) the chemical 
heat released per unit mass of oxidizer consumed in 
the gas phase. The derivation of equation (2) from 
equation (A4) evaluated at r = r, involves the further 
approximation that E./c,, for the gas is constant, an 
approximation that will be used for simplicity 
throughout the present analysis. 

The function f in equation (2) is related to Y,, 
the gas-phase mass fraction of fuel at the liquid-gas 
interface, by equation (AlO), which can be written as 

e/ = (l-f+v)/(l -E- Y,) (3) 
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where v = Y o.=vF WF/(vo W,), and t? is the mass-flux 
fraction of impurity from the droplet surface. For 
convenience, ideal-solution behavior and applicability 
of the Clausius-Clapeyron equation with constant 
vaporization enthalpy [ 141 will be assumed adequate 
in describing the phase-change behavior. Equations 
(AlZ)-(AIS) can then be combined with equation (3) 
to yield 

1+A/[(l-~)(e/-1)--v] = [l+wy_/(l-y-)] 

xexp[~~l@+~I)-~21 (4) 

where w = W,lW”, 21 = &/(&TO), ~2 = &I 
(RFTM)* A = [(WFYO,~)/(VOWO)I ~jv~,+(WFIW~) 
x (1 - Yo,,), and 0 = &(T- T,,)/R,Ti. Here LF is 
the fuel vaporization enthalpy, RF the gas constant 
for the fuel, W, the fuel molecular weight, W, the 
impurity molecular weight, W, the gas-phase inert 
molecular weight, y_ the mass fraction of impurity at 
the droplet surface in the liquid phase, and TbF the 
boiling temperature for pure fuel. 

In terms of the dimensionless temperature 6 and 
the dimensionless time r = In (rJr,) (where r,,, is the 
initial droplet radius), equation (2) becomes 

l-g=& 1, B(O)=0 (5) 

where the constant b = c,RFTi/(3L.LF), and L has 
been assumed constant. When impurity vaporization 
is negligible, L = LF; when impurity is returning to 
the surface its heat of vaporization provides a negative 
contribution to L. In equation (5) B = Bo-boB, 
where B,,= [c,(T,-T,)+qY,,,/(v,W,)]/L. and 
b,, = cpRFTi/(LLF) are constants. 

The energetic aspects of the problem are defined 
nondimensionally by equations (4) and (5). There 
are eight parameters appearing in these equations, 
namely, p, B,,, bo, A, v, w, IX,, and LX?. Equation (5) is 
a non-linear first-order ordinary differential equation 
for 0 as a function of T, in which the variable f 
appears. Equation (4) relates f to 0, g and )I_. The 
equation for conservation of impurity in,the liquid 
phase must be considered to find y_ . 

With spherical symmetry, liquid-phase con- 
servation of impurity can be assumed to be described 
by the partial differential equation 

subject to the boundary conditions 

ligible when E is sufficiently small. The initial analysis 
assumes that B is small and can be neglected, although 
it will be taken into account as an additional constant 
parameter when return of impurity from the gas is 
considered. 

If the transformations .K = r/r, and dr = d In (r,,,/r,) 
are used, then with E = -D/[r,(dr,/dt)] the liquid- 
phase problem becomes 

(6) 

The definition K = -8r,(dr,/dt) of the burning-rate 
constant can be used, yielding the d-square-law given 
by equation (A19) when K is constant. The physical 
time t and non-dimensional time r are related by 
t = (c,,r$p,/i.) r. (e-“/f) dt. The term E can be recast 
as E = Dp,c,;(if) = Eofo/f where E,, = 8D/Ko and 
f. = p,c,[r,(dr,,‘dt)],/i+. The subscript 0 used here 
indicates that the quantities in question are evaluated 
at 5 = 0. 

Equations (4)-(6) will be assumed to describe the 
behavior of an isolated fuel droplet undergoing spher- 
ically-symmetric combustion with a low-volatility 
impurity present in the liquid phase. Equation (6) will 
serve to determine J’_ but has been seen to introduce 
four new parameters, sO. f,,, $ and y,,. Therefore, 
there are a total of 12 parameters in the complete 
problem, giving a wide range of possible behaviors. 
The system of equations will be studied only for par- 
ticular orderings of the parameters, selected for cor- 
respondence to the most realistic physical situations. 

3. NUMERICAL ANALYSIS 

Equations (4)-(6) with Z = 0 lvere integrated 
numerically for an n-decane droplet undergoing com- 
bustion in an atmosphere containing mass fractions 
of 50% O2 and N,, respectively. Combustion products 
were selected to be Hz0 and CO?. The integrations 
were performed using the values w = 0.2. A = 5.5418. 
v = 0.1431, x2 = 10.57, b, = 0.61, D = 5 x 10d9 m’ 
s-l, p, = 603.3 kg rnT3, c, = 2141 J kg-’ K-l. 
cp = 4200 J kg-’ K-‘, T, = 300 K, i = 0.1627 J m-’ 
S -' K-‘, and qj(vo W,) = 12.61 blJ kg-‘, cor- 
responding to fi = 0.104 and B, = 20.7. The mag- 
nitude for D was selected to provide a reasonable 
intermediate value for the liquid-phase diffusion 
coefficient. The parameter y was either 0 02 or 0 1. Fory,=0.02,r _ 10.80 f,0=3.08_and; _oo;5 - 

and the initial condition y(r, 0) = y,,. Here, D is the while for y0 1 0.1, 
. _ . 

z,‘= 10.79. I; = 3:07, and 
(constant) liquid-phase species diffusion coefficient of e0 = 0.026, corresponding to initial quasisteady com- 
the impurity, y the impurity mass fraction, and r the bustion. The variable T,, was selected such that equa- 
radial coordinate. Use has been made of’the pre- tions (4) and (5) were satisfied for the right-hand side 
viously stated assumption that droplet density of equation (5) vanishing. This temperature cor- 
changes are negligible. Impurity vaporization is neg- responds to the temperature a droplet would attain if 
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FOG. 1. Variations of the temperature T with time for an n- 
decane droplet undergoing combustion with an initial 

impurity mass fraction of y0 = 0.1 or 0.02. 

surface impurity buildup did not occur and surface 
regression followed the d-square-law. evolution of 
the impurity profiles was determined by evaluating 
equation (6) with a Crank-Nicolson scheme [IS], 
while equation (5) was evaluated using the Euler 
method [15]. The equations were found to be numeri- 
cally stiff so that a large number of grid points and 
small time steps had to be used. The grid spacing in 
the spatial coordinate was AX = l/900 for the results 
presented here. The time steps for the results presented 
were AT = 0.0002 for y. = 0.02, and Ar = 0.0001 for 
y,, = 0.1. These time steps were reduced by a factor of 
20 when the impurity surface mass fraction 
approached unity. This reduction was necessary 
because equation (5) became progressively stiffer as 
y... approached unity. Further reductions in the time 
steps before the impurity surface mass fraction 
approached unity, and further increases in the number 
of grid points used did not change the results sig- 
nificantly. 

Shown in Fig. 1 are results for the ins~ntan~us 
physical droplet temperature and the ‘steady-state’ 
physical droplet temperature plotted as functions of 
the nondimensional physical time i = 2rA[ln (1 + 

~oNl~w%4) for YO = 0.02 and 0.1. The time i 
would reach unity when the droplet disappears if the 
burning-rate constant were invariant. Steady-state 
droplet temperature is defined in Fig. 1 as the temper- 
ature the droplet would attain for equations (4) 
and (5) being satisfied with the right-hand side of 
equation (5) vanishing. The solid lines are the instan- 
taneous temperature and the broken lines are the 
steady-state temperature. Figure I indicates that the 
instantaneous droplet tern~~tu~ lags progressively 
further behind the steady-state temperature as com- 
bustion progresses. The temperature lag appears as a 
result of increases in y- . As y_ increases, the droplet 
requires heating. Because the droplet has a finite mass 
and heat capacity, it cannot heat instantan~usly, so 
the instantan#us temperature lags behind the steady- 
state temperature. This lag occurs earlier and is of 
greater magnitude for y. = 0.1 than for y. = 0.02. 
This is a result of the lessened droplet heating-rate 
requirements for y. = 0.02. Shown in Fig. 2 are results 
for f and y- as functions of t for y, = 0.1 and 0.02. 
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FIG. 2. Variations of the impurity surface mass fraction 
y_ and the nondimensional burning rate f with time for an 
n&cane droplet undergoing combustion with an initial 

impurity mass fraction of y0 = 0. I or 0.02. 

Also plotted are results for fss, which is the value 
that f would achieve for the given y_ if the droplet 
temperature followed the steady-state profile shown 
in Fig. 1. The f values are the solid lines, the y-values 
are the broken lines, and the fss values the dotted 
lines. Evident in Fig. 2 is the trend that f is approxi- 
mately constant until the surface mass fraction of 
impurity approaches unity, after which f decreases 
significantly. The variable fss changes much more 
slowly than f as y_ -+ 1, indicating that droplet heat- 
ing is important as y_ + 1 (i.e. the droplet cannot 
heat rapidfy enough to maintain vaporization levels 
as given by fss). Comparison of Figs. 1 and 2 illus- 
trates that large changes in f and significant tem- 
perature lags occur as y_ + 1 closely. Decreases in f 
are more gradual for y. = 0.1 than for y. = 0.02, and 
the period of approximately constant f is greater for 

y. = 0.02 than for y. = 0.1. These phenomena will be 
discussed in more detaif later in this paper. 

Computer runs were also made for different values 
of oxygen concentration in the atmosphere, for 
different values of y,, and also for n-heptane. The 
results from these runs, not presented here, generally 
followed the trends presented earlier in that for 
sufftciently small values of y, an initial period existed 
during which f was approximately constant and the 
instantaneous droplet temperature closely followed 
the steady-state droplet temperature. As combustion 
proceeded and the impurity surface mass fraction 
approached unity, f decreased significantly and sub- 
stantial temperature lags appeared. The decrease in f 
was found to occur more suddenly as y0 and w were 
decreased. Increasing y. tended to cause decreases in 
f to occur more gradually. 

4. ANALYSIS OF EARLY d-SQUARE-LAW 

COMBUSTION BEHAVIOR 

The numerical results presented earlier suggest that 
for sufficiently small y,, an early period of combustion 
exists during which f is approximately constant until 
y_ + 1. For constant f, equation (6) with E = co and 
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B = 0 can be solved to estimate the buildup of impurity 
at the droplet surface. 

Under typical droplet combustion situations 
K0 (5 low6 mz s-‘, while D N 10e9 m* s-‘, yielding 
E = &g = 8D/K, w IO-*. Hence E can be considered 
a small parameter, and asymptotic analyses can be 
performed for the limit E --* 0. Having E << 1 indicates 
that liquid diffusion is much slower than surface 
regression, suggesting that a ‘boundary layer’ of 
impurity will exist at the droplet surface. This has 
been emphasized recently by Makino and Law [ 161. 

Since a boundary layer of impurity is expected near 
the droplet surface, the substitution x = I -6z is 
appropriate. Here z is the ‘stretched’ variable and 6 is 
a small parameter to be determined. With the trans- 
formation h = y/y,, - 1, the problem in the boundary 
layer becomes 

ah 1 a*h 2E 1 ah -_=--_- 
ar s aZ= 6 I_ara;f(l-6z~~~ 

- 1, h(z, 0) = 0, h(z -. co) = 0. 

(7) 

A distinguished limit is found by setting 6 = E (see 
Appendix B for details), yielding the leading-order 
problem 

2 
"D=""+!?,!$, 

acp a22 ( > 
z+h, =-I 

i-0 

h,(z,O) = 0, h,(z -+ co) = 0 (8) 

where cp = r/s is a ‘stretched’ time and ho the leading- 
order term of the inner expansion h = ho +.sh, + , . . 
The condition ho(z + m) = 0 is found by matching 
to the outer solution, where it is found that the solu- 
tion outside the boundary layer must be h = 0 (see 
Appendix B). For small diffusion rates this is physi- 
cally satisfactory. The solution to this leading-order 
boundary-layer analysis is 

(y/ye) = ho+ 1 = (e-‘/2)(9-z+ 1) 

x11+erf(J(~/4)-z/J(4~)1--1/2erfc~J(rp/4) 

+zJ(4~)1 +J(rp/n) exp [-(z*/rp+2z+(~)/41+ 1 

(9) 

as shown in Appendix B. At the droplet surface 
(z = 0) equation (9) reduces to 

(Y/Y~) - = (p/2) t 1+ erfJ(cpl4)l +erfJ(cp/4) 

+J(cp/rr) eepi4+ 1. (10) 

The physical situation described by the leading- 
order boundary-layer problem (equation (8)) is that 
of a planar boundary regressing with constant velocity 
into a semi-infinite medium. Because a droplet reduces 
its surface area as it vaporizes, it is expected that this 
solution will be approximately valid until the droplet 
surface area changes appreciably, reducing the effec- 

tive volume available to the impurity, thereby causing 
a faster buildup of impurity at the surface than pre- 
dicted by equation (10). Equation (10) can be 
expected to provide increasingly accurate estimates 
for the buildup of impurity at the droplet surface to 
a mass fraction of the order of unity for increasing 
values of yo. For r << E, equation (10) shows that 
(y/y,)_ b 1 +J(T/(E~)), while for E << r, equations 
(9) and (10) are approximately described by 

and 

(.ri.ro) P re-'/&+I (11) 

(y/y& 2 t/E+ I. (12) 

Equation (I 1) shows the boundary-layer structure, 
and equation (12) demonstrates a linear buildup of 
surface mass fraction of the heavy constituent with t. 
In Appendix B it is demonstrated that the next term 
in the inner expansion for h goes approximately as 
h, g 3~*/2 for cp + 00, indicating that the leading- 
order solution is valid for T << 1. Since T = -(l/2) 
x In (1 -t/r,) (where f/l,, = rK,/(4&) is the fractional 

burn-time elapsed) the leading-order analysis is re- 
stricted to t/t, cc 1 (the early portions of the droplet 
lifetime). This makes sense physically, because for 
t/tb c-c 1, only small changes in droplet surface area 
will have occurred. In physical coordinates, equation 
(12) predicts that the impurity mass fraction at the 
droplet surface increases approximately as 

y- z~o{l-[1/(2~)]ln(l-r lb)) (13) 

valid for the time range E << t/tb cc 1. within which 
range In (1 - t/tb) 25 - t/tb. 

With the substitution J = y/y,, equation (6) with 
g = 0 was integrated numerically using an IMSL PDE 
solver (DMOLCH) [ 171. The IMSL routine required 
as input initial conditions which satisfied the bound- 
ary conditions of the PDE. Inspection of equation (6) 
shows that at I = 0, the initial conditions do not 
satisfy the boundary conditions. As a result, the IMSL 
routine was ‘started’ at a time T > 0 by using as input 
initial conditions generated by using the leading-order 
asymptotic solution (equation (9)). valid as r -+ 0, 
with the initial condition adjusted slightly near x = 0 
to satisfy the zero gradient. The ‘start’ time used was 
T = 0.001. As a check of the accuracy of these com- 
putations, equation (6) was also integrated using a 
Crank-Nicolson routine [ 151. Results between the 
IMSL and Crank-Nicolson routines were found to 
agree very closely. 

Shown in Fig. 3 are numerically-generated and 
asymptotic leading-order results for the surface mass 
fraction ratio (y/ye)_ as a function of the physical 
burn-time ratio t/t, and T for E = 0.02 and 0.05. Good 
agreement can be observed between the numerical and 
asymptotic analyses for t/t,, + 0. For t/t, t 0.1, the 
numerical results exhibit significantly more curvature 
than the asymptotic results. The asymptotic results 
for (y/y,)_ in Fig. 3 lag progressively further behind 
the numerical results with increasing z. As discussed 
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FIG. 3. Comparison of numerical and early-time asymptotic 
solutions of equation (6) for the surface impurity mass frac- 

tion ratio (v/yO)_ as a function of time. 

previously, this lag arises because the asymptotic 
results are for planar motion in a semi-infinite domain, 
where the surface area is constant, while the numerical 
results account for droplet sphericity and changes in 
droplet surface area and volume. 

Figure 4 gives plots of the numerically-computed 
and asymptotic impurity mass-fraction profiles as a 
function of the normalized droplet radius for E = 0.02 
and 0.05, respectively. For each plot, t/to = 0.1813 
(t = 0.1). The numerical and asymptotic profiles are 
quite similar, except that a higher value of the surface 
mass fraction ratio is predicted by the numerical 
analysis for this particular time, as shown in Fig. 3 
and explained above. 

Figure 3 indicates that equation (9) can be expected 
to be valid until t/tb z 0.1. Equation (13) can be solved 
for y. to estimate the minimum value of y,, allowed to 
produce y_ = 0( 1) at a bum-time ratio of t/t,, z 0.1. 
For y_ = 1, E = 0.02, and t/t,, = 0.1, equation (13) 
requires that y0 L 0.28 for equations (9) and (13) 
to be useful for estimating the time required for the 
impurity mass fraction at the surface to approach 
unity. For E = 0.05, t/t, = 0.1 and y_ = 1, equation 
(13) yields y0 3 0.49, while for E = 0.01 equation (13) 
yields y0 t 0.16. Since these values of y,, are larger 
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FIG. 4. Comparison of numerical and early-time asymptotic 
solutions of equation (6) for the spatial profile of the mass 

fraction impurity ratio (&) at the time I/I~ = 0.1813. 

than is normally encountered, there is motivation for 
seeking improved approximations that take into 
account the volume change of the droplet. 

5. LATER d-SQUARE-LAW COMBUSTION 

BEHAVIOR 

To extend the region of validity of the previous 
asymptotic analysis to larger values of time, more 
terms in the formal asymptotic expansion can be com- 
puted. This method, however, is quite involved 
(Appendix B). An alternative approach is to trans- 
form the dependent coordinate according to 
y = yO(g+ 1) yielding the problem 

[&$-g,ag 
dzg 2~ 

x=&Q+ [ 1 ag y-" z 

1, ag = ( ) ax = 0, g(x,O) = 0. x-l x= 0 
(14) 

To analyze equation (14), it is advantageous to take 
a Laplace transform in the time coordinate, yielding 
an ordinary differential equation for the transformed 
dependent variable in terms of the transform variable 
s and the spatial coordinate x (see Appendix C for 
details of this analysis). An exact solution to the ordi- 
nary differential equation can be found, but the 
inverse transformation of this solution was not evalu- 
ated because of the complexity of the solution. An 
approximate solution can be found, however, by 
WKB analysis [18], which can be easily transformed 
back to the original time variable. From the WKB 
analysis, the physical-optics approximation for the 
mass fraction ratio for r >> E is 

(y/yd = 1+ W(341(e3’ - 1) exp [(x2 - WCWI. 
(15) 

In physical time this relation becomes 

(YIYO) = 1+[1/(341[(1 -hJ-3,2- 11 

xexp [(x2- 1)/(2&)]. (16) 

Since for d-square-law behavior ( V/V,,) = (1 - r/t,,)3iZ, 
equation (I 6) can be rewritten as 

(v/ud z 1+ [1/(3dWo/V- 1) exp W - 3MWl 
(17) 

where V,, is the initial droplet volume and V the 
droplet volume at the time of interest. 

Equation (17) may also be obtained by assuming 
that transient composition profiles are geometrically 
similar in the x coordinate according to (y--yO)/ 
(y_ -yo) = exp [(x2- 1)/(2.s)]. For a given volume 
ratio V,/V, y_ may be evaluated by employing this 
relation in the statement of overall mass continuity 

I 

Yd3 = x’y dx 
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------ NUMERICAL RESULTS 
- ANALYTICAL RESULTS 

t /tb 

FIG. 5. Comparison of numerical and asymptotic solutions 
of equation (6) for the surface impurity mass fraction ratio 

(y/)t,) _ as a function of time. 

yielding equation (17) when 

is evaluated to Ieading order in E. 
It is worth noting that at the droplet surface, the. 

boundary-layer analysis predicts that the mass-frac- 
tion ratio behaves as (rho) z I+ cp + 3erp2/2 + . . . for 
cp -+ co (see Appendix B), while equation (15) predicts 
that (y/yO) 7 I +7/a+3r2/(2&)+. , . for I -+O. Since 

cJ = r/e, the two expressions agree to this order for 
thelimitscp-,co,r+O. 

Shown in Fig. 5 are comparisons of the WKB 
results from equation (IS) with numerical com- 
putations and with equation (10) for the surface mass 
fraction as a function of time. Good agreement 
between the WKB and numerical results is evident. 
The improvement over the results shown in Fig. 3 
stems from the fact that the effects of volume changes 
are now taken into account by the WKB method. 
Figure 6 illustrates comparisons between the numeri- 
cal results and WKB results for the impurity mass- 
fraction profiles at the time t/t,, = 0.632 1 (r = 0.5) for 
E = 0.02 and 0.05. Good agreement between the WKB 
and numerical results is evident in Fig. 6. Physically, 

- , 
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FIG. 6. Comparison of numericaf and WKB solutions of 
equation (6) for the spatial profile of the mass fraction 

impurity ratio (y/y,,) at the time t/r, = 0.6321. 

comparison of equation (9) with equation (15) indi- 
cates that, approximately, as the droplet surface 
regresses. the impurity is swept up by the regressing 
surface and ‘trapped’ in a boundary layer with a thick- 
ness of O(E) (in the transformed space coordinate). 

Based on the previous results, it appears reasonable 
to postulate for the situations considered here that 
droplet heating is not important during the early por- 
tions of the combustion history of an initially quasi- 
steadily burning droplet, until a critical bum-time 
ratio jt!th)c is reached when the mass fraction of 
impurity at the droplet surface approaches unity. As 
(t/f,,) -+ (r I,,)~, the droplet wants to heat quickly. 
Because of a finite heat capacity, however, the rate of 
increase of droplet temperature is limited, and less of 
the heat input can be used for vaporization, so that 
the vaporization rate decreases and the flame must 
contract. 

This type of flame contraction has been observed 
previously [5,7]. Law and co-workers f5], for example, 
added a low-volatility surfactant (Span SO) to light 
liquid hydrocarbon droplets. Droplets burning with 
Span were observed to burn with d-square-law 
behavior (following an initial transient) until a critical 
point was reached at which game regression suddenly 
occurred and droplet vaporizat.ion slowed consider- 
ably. Flame growth was observed after flame contrac- 
tion, followed by d-square-law behavior until micro- 

explosion or extinction occurred. The flame growth 
following flame contraction is attributed to the 
increased vaporization rates of droplets after com- 
pletion of droplet heating. The d-square behavior dur- 
ing this period is likely associated with the quasisteady 
combustion of both Span and the light fuel, as dis- 
cussed elsewhere [19]. 

If it is assumed that an impurity mass fraction near 
unity at the droplet surface is required to produce 
flame contraction, equation (17) can be used to esti- 
mate the reduced droplet volume (k’/V,) at flame 
contractionfor(l-V/V,) =Q(l).For(l-V/V,)<< 1. 
equation (10) should be used. For predictive pur- 
poses. y _ = I is employed in equation (17) as a criterion 
for flame contraction. Equation (I 7) exhibits reason- 
able agreement with flame shrinkage data available in 
the literature [.5], as shown in Fig. 7. According to 

- EXPERIMENTAL DATA 

INITIAL VOLUME FRACTtON OF SPAN 

FIG. 7. Comparison of theory (equation (18)) with exper- 
imental resutts (51 for prediction of the normalized droplet 
volume at flame contraction as a function of the initial 

impurity volume fraction. 
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equation (17), the formula for the dashed line in Fig. 
7 is simply 

vlv, = Y&%+3@ -Yo)l (18) 

which shows how the critical volume ratio depends 
on the initial mass fraction y, of the low-volatility 
constituent and on the ratio (c/8) of the diffusion 
coefficient D of the impurity in the liquid to the initial 
burning-rate constant K,, of the fuel. The dashed line 
in Fig. 7 was generated with the assumption that y, is 
equal to the initial volume fraction of Span. 

Law and co-workers [5] indicate that for a given 
value of the initial Span volume fraction, flame con- 
traction occurs at a droplet volume fraction essentially 
independent of the environmental conditions. The 
analysis presented here tends to agree with this obser- 
vation, because E = e. = ~DlK~ depends-on KO* and 
K,, shoutd not vary much for droplets vaporizing in a 
hot environment, until the less volatile component 
builds to appreciable surface levels, causing significant 
droplet heating. 

6. NON-~-SQUARE-~W COMBUSTION 

BEHAVIOR 

Equations (4)-(6) are non-linearly coupled, making 
the task of finding simultaneous solutions to these 
equations formidable. Progress can be made, how- 
ever, by noting that equation (4) indicates that 
changes in f will be smalf when changes in the right- 
hand side of equation (4), henceforth denoted by G, 
are small, and that changes of the order of unity in f 
occur when changes in G are of the order of unity. 
Increases in y_ increase G, while increases in 8 
decrease G. The results presented in Section 4 on d- 
square-law combustion assumed that G was constant. 
Hence, it is instructive to estimate how G varies as 
combustion proceeds, so that criteria for breakdown 
of d-square-law behavior can be established. 

Advantage will be taken of representative mag 
nitudes of parameters to achieve simplification. Thus, 
analysis can proceed by first noting that for 0 << r,, 
the argument of the exponential appearing in equation 
(4) can be expanded to yield the approximate relation 

G= l+A/[e/-(l+v)] % [l+oy_/(l-y_)]Ee-’ 

(19) 

t It may be remarked in passing that these results can be 
specialized to pure vaporization without combustion in a hot 
enwronment by settmg I’,, = 0. 

$ In the opposite limit of s&iciently large 8’ (for example, 
if the heat capacity of the liquid is large enough), temperature 
changes develop so slowly that 0 = 0 may be employed as a 
good approximation in equation (19) to convert equation 
(6) to a temperatuie-independent problem for addressing 
the decrease in the burning rate and the consequent flame 
contraction that occur as y_ approaches unity. To address 
this problem conveniently by asymptotic methods, w may 
reasonably be selected as a small parameter. 

where E = exp (~1, -x2). Since r, typically is of the 
order of 10, this approximation may be expected to 
remain valid until 0 becomes larger than order unity. 
Equation (19), when combined with equations (4) and 

(51, yields 

afz (B,-b,B)/[A/(G-1)-1-v]-1 (20) 

subject to 0(O) = 0, where now B,, = [c,( T, - T,,) + 
qYo.,I(vo t!f,)]/L, and &, = c&T$L$, since con- 
sideration is restricted here to cases in which Ef = I 
and all other E are small enough for their contribu- 
tions to L to be negligible. With attention focused on 
initially d-square combustion, f0 = In (1+&J. equa- 
tion (19) requires for y, << 1 that E o 1 +A/(&-v). 
Examination of equation (19) indicates that changes 
in I3 of the order of unity cause changes in f of the 
order of unity when changes in oy_ /(l --f_) are 
small compared to unity, while changes in cuy_/ 
(I -y_ ) of the order of unity cause changes in f of 
the order of unity if 0 is small compared with unity. 
For 0 of the order of unity or less, estimate? indicate 
that B, >> b,@ (i.e. B depends weakly upon the 
droplet ~m~rature) and A/(G- I) >> v, allowing 
equation (20) to be approximated as 

de 

fix 
x (i+B,/A){[l+wY_/(l-y_)]e-e-l). (21) 

Equation (21) can be integrated formally to yiefd 

1, 
eez I+we-” 

s 
e’[y-/(I-y-)]dr’ (22) 

0 

where T’ = ~(1 +Bo/A)/fl. Equation (22) provides an 
approximate expression for e as a function of y_, 
provided that y_ is known as a function of 5’. It 
enables G to be represented approximately as 

Gx 
[1+~Y-/(l-_y-)lE 

&’ (23) 

l+oe-” 
J 

e” [y_ I( 1 -y- )] dr’ 
0 

which indicates that G and hence f remain approxi- 
mately constant when WY_ /( I -y_ ) cc 1. For 
wy_/(l-y_) B O(l), changes in G are small when 
the numerator and denominator of the right-hand side 
of equation (23) change at approximately the same 
rate, a situation that occurs when wY_i(l -y_) 
changes slowly on the 5‘ time scale. However, if 
oy-/(l -Y_) changes rapidly on the 5’ time scale 
(y_ -, 1 rapidly), then the denominator grows much 
more slowly than the numerator, and G will change 
significantly.? 

A relevant parameter is thus seen to be 
/?’ = @/(I +B,/A), the scale factor between the r and 
7‘ time scats. Since estimates show that in rep- 
resentative situations 8’ is of the order of IO-’ or less, 
attention will be restricted to small values of fl’, such 
that characteristic times for temperature changes are 
short compared with characteristic times for droplet- 
size changes.$ If wy_/(l -y_) remains small until 7 
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becomes of the order of unity (which it can do only if 
s0 ZZ y,, as can be seen by considering equations (10) 
and (15)), then it is appropriate to use equation (15) 
in equation (23) to identify conditions under which G 
will begin to change. When this is done, by asymptotic 
expansion of the integral in equation (23) by the 
Laplace method [18] to first order in powers of /?’ it 
is then found that G is given approximately by 

G * E/(1-(w/Y)(dy_/dr)(l-y_)-’ 

x[l-(l-o))._]-‘) (24) 

where y_ is evaluated from equation (15). Equation 
(24) indicates that G increases appreciably, that is, f 
decreases appreciably, when 1 -y_ becomes of the 
order of o/3’ (dy_/dr is of the order of unity for this 
case). From equation (15) it then follows that f 
decreases appreciably when 3r is within the order 
of w/Y’ of In (1 +~E,,/J~). The time T, = (l/3) In (I 
+3&,/y,,) is a critical time at which J_ approaches 
unity very closely. Analysis of the resulting decrease 
in f can proceed by stretching the time variable about 
T, such that changes in r of the order of oj?’ produce 
changes in the stretched time variable of the order 
of unity. To this end, the stretched time variable 
(T-T~)/(w/~‘) may be introduced to analyze equations 
(6), (19) and (23) simultaneously, with matching to 
equation (15) imposed as this variable approaches 
-ok. For ?‘O c< aO, this stretching is performed about 
a large value of T, such that t is not far from lb, while 
for y0 and +, of the same order, the stretching is about 
T and (fh -f)/r, of the order of unity. 

For E” << J’” it is more appropriate to use equation 
(9) instead of equation (15) to estimate deviations of 
f from fo, since for this case droplet volume changes 
are not expected to be important before y_ 
approaches unity. So long as E,, << fl’s’ << 1, equation 
(10) then predicts that J’_ ‘5 y&r/&,,, the substitution 
of which into equations (19) and (23) yields different 
results depending on whether &0;y0 << 8’ or eO/yO >> fl’. 
If&,/y0 K 0’ the approximation 

A/[e’-(l+v)]+l 5 [I+oy,~o/(l-y,cp)]E/ 

(1 - b~OIO.OB’)I[_rO~+~~ (1 -_wPN~ (25) 

is obtained. This approximation may be found by 
noting that for .a,JyO << /?‘, T' cc 1, allowing the 
exponentials in equation (23) to be neglected. Con- 
versely, if E~/J~ >> j?’ it is found that 

A/[e’- (1 + v)] + I 2 El{ I - (co~-~/l’/e~) 

x (1 --yap)-‘[I - (l-w)y,cp]-‘1. (26) 

Equation (26) may be obtained by expanding the inte- 
gral in equation (23) to first order with the Laplace 
method, as was done with equation (24). These 
expressions exhibit appreciable changes in f when 
y,cp differs from unity by the rather small amount w 
for equation (25) or by the smaller amount ~y,$‘/s, 
for equation (26). Thus, for so/y0 >> fi’ it is appro- 
priate to introduce the stretched time variable 

(cp - 1/y,,)/(w/3’/~,,) of the order of unity for analyzing 
the transition, with the solution matched to equation 
(11) as this variable approaches - x On the other 
hand, for so/y,, c< fl’ the corresponding stretched time 
is simply (co- l/yo)/(w/yO), which extends to appre- 
ciably earlier times. These predictions are consistent 
with the results shown in Fig. 2. 

At this point in the analysis, some qualitative obser- 
vations may be made regarding the assumption of 
spatially uniform droplet temperature profiles. With 
the assumption of spatially uniform temperatures, 
order unity decreases in f are predicted to occur when 
the condition (1 -y_) << 1 is met. These decreases 
arise because the droplets require rapid heating as 
y_ + 1 closely. When non-zero liquid temperature 
gradients exist, the outer regions of droplets (near 
x = 1) heat faster than the inner regions such that. in 
effect, less of the liquid mass is heated than if tem- 
perature profiles were spatially uniform. Hence, for a 
given energy flux into a droplet, the droplet surface 
temperature will increase faster with non-zero liquid 
temperature gradients than when droplet temperature 
profiles are spatially uniform. As shown by equation 
(4). f depends on the variables J’_ and 0 only; 
increases in 0 lead to increases in f. Thus, it may be 
argued for the parameter ranges investigated here that 
the assumption of spatially uniform droplet tem- 
peratures provides a slightly conservative estimate for 
conditions where appreciable decreases in f occur. 
Allowing for finite-rate liquid heat conduction will 
allow y_ to approach unity only slightly more closely 
before f decreases significantly. Since dy_/dr is at 
least of the order of unity for y_ -+ 1 (see equations 
(10) and (15)), allowing for finite-rate liquid heat con- 
duction will likely not appreciably change the above 
estimates for occurrence of decreases in f. 

To analytically investigate the occurrence of liquid 
temperature gradients, it may be argued that the 
assumption of a uniform droplet temperature is valid 
as long as characteristic droplet temperature changes 
occur over long times compared with characteristic 
thermal diffusion times for the liquid. To evaluate the 
uniform temperature assumption, especially for the 
later phase of droplet behavior where the most rapid 
temperature changes occur, the ratio of a charac- 
teristic droplet temperature rise time rR = A,T/(dT dt) 
to a characteristic thermal diffusion time I, = rfc,p,,‘i 

may be estimated. Here, AT is a characteristic droplet 
temperature change. Droplet temperature profiles 
may be approximated as spatially uniform when 
tD/tR cc 1. It can be shown that this characteristic 
time ratio may be expressed as t,,fR = [3/(A@](?Qj 
ds) _ , where (%)/13x) _ is the non-dimensional tem- 
perature gradient on the liquid side of the gas-liquid 
interface, and A0 is the characteristic non-dimensional 
temperature change. The variable A8 is taken to be 
of the order of unity, such that liquid-phase tempera- 
ture gradients may be approximated as spatially 
uniform when (de/ax) _ << 1. By apply-ing energy con- 
servation across the gas-liquid interface, the tem- 
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perature gradient on the liquid side of the gas-liquid 
interface may be expressed as 

a 0 ~+c,.,f- B 
ii__ [ 1 

-- 
=z3c,ji &-I 1 (27) 

where L, is the gas thermal conductivity and L the 
liquid thermal conductivity. With the assumptions 
used thus far in this analysis, equation (27) may be 
approximated as 

where the parameter y = (J,/L)(l +&,/A)/&,. 
Equation (28) implies that (a@ax)_ will be of the 
order of unity when (G/E- 1) is of the order of I&. 
For the cases considered here, increases in G of the 
order of unity bring about corresponding decreases in 
J Estimates indicate that for typical droplet com- 
bustion situations, y may be of the order of unity, 
suggesting that liquid temperature gradients may be 
of the order of unity when changes in f of the order 
of unity occur. As argued above, non-unifo~ liquid 
temperature gradients wifl likely not si~i~cantIy 
influetice estimates for when appreciable changes in 
f occur. For investigation of later combustion 
behaviors, though, consideration of liquid tem- 
perature profiles may be important. 

7, VAPORIZATION OF AN INITIALLY PRESENT 

IMPURITY 

The preceding analyses have assumed that vapo- 
rization of an initially present impurity was negligible. 
For the purpose of estimating the amount of impurity 
in a boundary layer of impu~ty at the droplet surface 
it is evident that impurity vaporization is negligible 
when the mass flow rate of impurity into the boundary 
layer (from the droplet interior) is much greater than 
its mass flow rate out of the droplet surface by evap- 
oration. The ratio of the second to the first of these 
flow rates is simply g/ye. If the impurity reacts chem- 
ically with other species as a fuel in the gas phase 
according to the single-step chemical reaction given 
by equation (Al), it is easily shown by algebraic 
manipulation of equation (AlO) that the relation 
E’ = (1 + YF+ / YH, ) applies. Here Y,,, is the mass frac- 
tion of impurity in the gas phase at the droplet surface. 
With the assumptions of liquid ideal@ and appli- 
cability of the Clausius-Clapeyron relation with con- 
stant vaporization enthalpy for each liquid-phase 
species, the criterion for neglection of impurity vapo- 
rization can be written in terms of dimensiona vari- 
ables as 

(I/Y- -U/U/Y*- 1) B (&I/~) 

x exp [(L/&4 -&I&)(lITbF - I/r)1 (29) 

where LH is the impurity vaporization enthalpy, RH 
the impurity gas constant, PbH the vapor pressure 

of pure impurity at the temperature TbF, and P the 
ambient pressure. Equation (29) states that impurity 
vaporization is negligible for y_ and T being 
sufficiently small, and LH being sufficiently large; as 
LH + co, PbH decreases su~~ently rapidly such that 
the right-hand side of equation (29) vanishes. 

It was reasoned earlier that sudden flame contrac- 
tion would be expected if wy_/(l -y_) approaches 
unity sufficiently rapidly. Hence, it can be concluded 
that sudden flame contraction will occur only for a 
given range of yo. If y. is sufficiently small, then the 
surface mass fraction of impurity will grow to levels 
such that equation (29) is violated before the 
flame-contraction criterion is met (i.e. impurity 
vaporization becomes sufficiently vigorous to prevent 
a rapid enough surface buildup of impurity to cause 
sudden game contraction). For y. su~ciently large, 
wy_/(I -y_) is of the order of unity or larger even 
initially, and sudden flame contraction is not expected 
to occur. 

8. SURFACE CONDENSATION OF GAS-PHASE 

SPECIES 

Migration of high-molecular-weight gas-phase 
pyrolysis products to the surface of burning hydro- 
carbon droplets has been suggested as a cause of 
observed multicomponent-type behavior [II, 121 (i.e. 
sudden flame contraction followed sometimes by 
droplet disruption) for initially high-putty single- 
component fuels. The conjectured situation is one in 
which gas-phase pyrolysis products miscible with the 
liquid fuel are absorbed at the droplet surface and 
diffuse into the droplet interior. The continued depo- 
sition of pyrolysis products, as well as the volume 
change of a burning droplet, will raise the surface 
mass fraction of these impurities, possibly causing the 
rapid flame contraction reported in refs. 111, 121 and 
discussed earlier in this paper. Simplified analyses 
addressing the possibility of such condensation of gas- 
phase pyrolysis products on the surface of a burning 
droplet can be developed in a manner exactly par- 
allding the preceding analyses. 

To proceed with the analysis, it is assumed that all 
pyrolysis products condensing on the droplet surface 
can be considered as a single species with a very low 
volatility relative to the original hydrocarbon fuel. 
With the previous assumptions used for an initially- 
present impu~ty, equation (6) is appropriate in 
describing the evolution of impurity profiles within a 
burning droplet, wherey is the impurity mass fraction, 
and E’ is negative for impurity deposition onto the 
droplet surface. All other variables are as previously 
defined. For further analysis it is assumed that y, = 0. 

To solve equation (6) it is necessary to specify the 
form of E; which is dependent, for example, on fuel 
vaporization rates and gas-phase pyrolysis kinetics. 
Detailed analyses of these processes will not be pre- 
sented here. Instead, the simplifying assumption that 
E’is constant will be introduced, allowing equation (6) 
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to be analyzed by the methods developed in this paper. 
An objective of such an analysis is to estimate the 
order-of-magnitude of I required to produce sudden 
flame contraction of the type reported in refs. [ 11, 121. 

Earlier it was argued that approximately d-square- 
law combustion could be expected when the surface 
mass fraction of impurity was sufficiently small 
[wJ~- /(I -u_) << I]. This same criterion will apply 
here, since the unsteady energy conservation analyses 
presented in Section 6 remain valid for this situation, 
so long as E<c I (i.e. impurity returns slowly to the 
droplet). Hence, for purposes of estimation it can be 
assumed that droplet vaporization initially follows 
the d-square-law. Utilization of the transformation 
g = -y/Z, along with the previously-used trans- 
formations of the spatial and time coordinates repro- 
duces equation (14) from equation (6). With d-square- 
law surface regression, approximate solutions to 
equation (14) can be found using techniques already 
presented. When t/t, c I, the boundary layer analysis 
presented in Appendix B is appropriate, yielding for 
E << 5 << 1 

y Z Ee-‘In (V/V,)/(3c). (30) 

When r = O(l), the WKB analysis presented in 
Appendix C is appropriate, yielding 

Y z -E(V,/V-I)exp[(x’-1)/(2~)]/(3~). (31) 

Equations (30) and (3 I) can be solved to estimate the 
magnitude of B required to produce y_ w 1 at a given 
volume ratio Vo/V. In refs. [ 1 I, 121, flame contraction 
typically occurs relatively late in the combustion his- 
tory after a period of approximately d-square-law 
behavior ( Vo/V a 6, say), implying that equation (3 1) 
is appropriate for analyzing these experiments. 

Equation (31) states that for I’_ and (VJV- I)/3 

of the order of unity, 111 = O(E), requiring that a frac- 
tion of O(E) of the original liquid fuel condenses on 
the droplet surface in the form of a miscible low- 
volatility pyrolysis product. Under typical droplet 
combustion situations, including those experienced in 
refs. [I I, 121, it isexpected that E = 10e2. Hence, based 
on this analysis, it appears reasonable to consider the 
possibility of gas-phase pyrolysis products producing 
flame contraction behavior of the type observed in 
refs. [ 11, 121 as being realistic, since only a small 
fraction [O(E)] of the original droplet mass needs to 
condense on the droplet surface. More analysis is 
needed, however, concerning such topics as pyrolysis 
kinetics, liquid-phase solubilities, and gas-phase 
transport to determine whether the situation con- 
jectured here actually is realized. For example, gas- 
phase pyrolysis species diffusivities or net pyrolysis 
product production rates may be too low to provide 
pyrolysis-product mass-flux fractions of the mag- 
nitudes predicted here to be required for occurrence 
of sudden flame contraction. 

9. SUMMARY AND CONCLUSIONS 

This paper has focused on the combustion and evol- 
ution of liquid-phase component profiles, vapo- 

rization rates, and temperatures of miscible binary 
droplets containing a high-volatility component 
(‘fuel’) and a low-volatility component (‘impurity’), 
with spherical symmetry present in the liquid and 
gas phases and impurity vaporization neglected. The 
impurity was treated as being initially present in small 
amounts, or as returning to the liquid phase from the 
gas phase at a small rate. In all analyses, droplets were 
assumed to begin vaporizing with the initial droplet 
temperature selected such that d-square-law surface 
regression would occur if there were no buildup of im- 
purity at the droplet surface. In Appendix D, analyses 
are given regarding the combustion of initially cold 
droplets, and it is argued that for fuels of sufficiently 
low molecular weight (e.g. heptane or decane), with 
sufficiently low initial impurity mass fractions, the 
effect of droplet surface regression on surface impurity 
buildup may be neglected during the initial heatup 
period, so that the results obtained herein continue to 
apply. Reasoning was presented regarding vapo- 
rization of an initially present impurity, and it was 
shown that impurity vaporization could be neglected 
when the droplet temperature and the impurity sur- 
face mass fraction were sufficiently small. if the 
impurity was considered to react chemically in the gas 
phase. 

For sufficiently small initial values of the initial 
impurity mass fraction, numerical integration of 
the conservation equations for n-decane droplets 
demonstrated that surface regression would approxi- 
mately follow the d-square-law until the surface 
impurity mass fraction closely approached unity, after 
which the surface regression rate would rapidly 
decrease and would not follow the d-square-law. For 
sufficiently large values of the initial impurity mass 
fraction, the numerical results demonstrated appreci- 
able departures from d-square-law behavior. Asymp- 
totic results for initial and intermediate stages in the 
droplet vaporization history indicated that when sur- 
face regression follows the d-square-law, a boundary 
layer of impurity grows at the droplet surface. 
Numerical and asymptotic analyses demonstrated 
that decreases in the vaporization rates are a result 
of the surface impurity mass fractions approaching 
unity. Asymptotic analyses regarding the absorption 
of a miscible low-volatility component at the surface 
of a vaporizing droplet suggested that small amounts 
of material returning to the droplet from the gas phase 
may be capable of producing the type of flame con- 
traction reported for the combustion of reasonably 
pure n-decane [ 1 I] and impure n-heptane [ 121 drop- 
lets. 

The analyses presented demonstrate, for the spher- 
ically-symmetric combustion of binary droplets with 
sufficiently large volatility differentials, that con- 
ditions may exist whereby reductions in vaporization 
rates may be expected, producing flame contraction 
phenomena similar to those reported in the literature 
[5, 11, 121, as a consequence of impurity buildup in a 
liquid boundary layer at the droplet surface. In the 
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analyses, liquid-phase diffusion was considered to be 
slow relative to droplet surface regression, and the 
small parameter iso = 8D/Ko was identified as being 
important in characterizing impurity profiles within 
droplets. Increased surface mass fractions of impur- 
ities were shown to lead to droplet heating, and sig 
nificant reductions in vaporization rates were shown 
to occur when, because of a finite heat capacity, drop- 
let temperatures could not increase rapidly enough to 
maintain &square-law surface regression behavior as 
the surface mass fraction of impurity approached 
unity. Asymptotic results predicting the occurrence of 
flame contraction (equation (18)) exhibit reasonable 
agreement with data from the literature (Fig. 7). Con- 
sideration of vaporization of an initially present com- 
bustible impurity indicated that a range of the initial 
mass fraction of impurity was expected to produce 
sudden reductions in vaporization rates; with too 
much impurity initially present, vaporization of the 
impurity would always be important, and significant 
droplet heating would not occur, while if too little 
impurity was present. significant composition changes 
at the droplet surface would never occur to cause 
signi~cant droplet heating. ~o~esponding results 
apply for an impurity returning to the droplet surface 
from the gas phase; a small fraction of the original 
droplet mass (O(.so)) needs to return to the droplet in 
the form of an impurity to reduce vaporization rates. 

Further analyses regarding, for example, gas-phase 
pyrolysis kinetics are needed before definite con- 
clusions may be drawn concerning effects of low-vola- 
tility constituents returning from the gas. Further 
experiments would also be helpful. For example, it 
could be enlightening to extinguish and capture, for 
composition analysis, droplets burning in reduced- 
gravity environments under conditions known to pro- 
duce flame contraction (e.g. n-decane in atmospheric 
air [I 1]), at various times before flame contraction 
occurs. It would then be possible to evaluate the kinds 
and amounts of impurities, if any, present in the liquid 
phase from the gas phase, providing a firmer base 
from which to draw conclusions. 

Further asymptotic analyses would be of interest 
for describing the phenomena occurring as the surface 
mass fraction of impurity approaches unity. The rel- 
evant time scales have been identified here, but the 
analyses needed in the stretched time coordinates have 
not been addressed. There are four cases to be con- 
sidered, namely fl’ >> 1, .so/yo << @’ =K I, @‘ K ao/yo << 
I, and #3’ << 1 < E~/~~, the last two of which often 
will be of greatest physical relevance. The last case 
includes eo/yo >> 1. Pursuit of these analyses is the 
next step in obtaining complete analytical descrip 
tions of the entire combustion histories of binary 
fuel droplets of the type considered here. 
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APPENDIX A. DROPLET VAPORIZATION WITH Q = Yo/(vo Wo) + YP,l(VP, WP,, (Al 1) 

A QUASISTEADY GAS PHASE 
allows the relation 

With the simplifications that the gas-phase Lewis number 
is unity, body forces are negligible, radiant heat flux is neg- Y,,+ = vp,Wp,Yo., e-‘+i(~or~o) (Al2) 
ligible, that the specific heat and binary diffusion coefficients 
of all species are constant and equal, that diffusion is to be found from equation (AS) (with the assumption that 

described by Fick’s law [14], and that gas-phase chemical product concentrations are negligible in the atmosphere). 

changes occur by a single-step mechanism The subscript Pi indicates the product i. The mass fraction 
at the droplet surface of an inert gas present in the environ- 
ment can be evaluated with the relation 

(S, = species i) solutions to the quasisteady gas-phase con- 
Y,, = l--cYF!+- c Yp,+ = e-l- (1 -Y,.,) (A13) 

servation equations can be conveniently described in terms where the subscript I denotes the inert species. 
of ‘coupling functions’ [14] defined by For the analysis presented in this paper, it has been 

R = 2,-r, 642) 
assumed that the liquid is ideal and that the Clausius- 
Clapeyron relation with a constant vaporization enthalpy is 

where valid, yielding the phase-equilibrium relation 

1, = Y,:'[w,(v;'-v:)] Wa) xF,+ = xF,_ exp [Li+(l/Tb,+ - 1 T_)&,l (Al4) 

for species conservation, or where where X is the mole fraction, r, the boiling temperature at 

2, = CPU--- T, l/q Wb) 
the ambient pressure, and R the gas constant. Equations 
(A8), (AIO), and (AlZ)-(A14), coupled with the identity 

for energy conservation. Here, Y, is the mass fraction of 
species i, W, the molecular weight of species i, T+ the tem- 
perature of the droplet surface, c,, the specific heat at constant 

x, = (Y,/Wil 
i 
C(r,iU) (Al9 
I 

pressure, and q the standard heat of reaction for the fuel 
(q = YE;‘=, hp W,(r:--c;), where /I(’ is the enthalpy of for- 

were used to generate the results presented in the main text. 

mation of the ith species). In terms of the dimensionless 
A transfer number B may be defined as 

radial coordinate B=eJ+-I (A16) 

f = 
J 

[tic,/(47+;.)] dr z ticJ(47tr9 (A4) 
whence the burning-rate constant K, defined by 

r K = - ftr,(dr,/dr) (Al7) 

where r is the physical radial coordinate, ti the droplet is readily found by using relations (A4) and (A16) to give 
vaporization rate, and i. the gas-phase thermal conductivity, 
the solution for /I in spherical coordinates yields the relation K = [M./@,c,)] In (1+8). (Ai8) 

e”- - 1 = (a+ -O,)/(aQ/af)+ (AS) 
Here I/c, has been assumed constant, and p, is the liquid 
density. When j is independent of time, K is constant, 

where the subscripts x and + indicate values in the ambient yielding the familiar d-square-law 
environment and at the droplet surface (r = r,), respectively. 

With the assumption that oxidizer is present at the droplet d= = d:--Kt. (Al!‘) 

surface in negligible amounts, the gas-phase temperature 
gradient at the droplet surface can be evaluated by using the 

Here, d is the droplet diameter at time 1. and d, the droplet 
diameter at t = 0. 

coupling function 

Q = Cpu--7-+)/q+ Yo/(vo~o) (‘46) APPENDIX B. EARLY-TIME BOUNDARY- 

(where the subscript 0 denotes oxidizer) in equation (AS), LAYER ANALYSIS 

yielding To analyze equation (6) approximately for r -+ 0, E -+ 0, 
it is convenient to transform the dependent variable using 
h = y/y, - 1, yielding the problem 

The subscript + on f is omitted for brevity when this for- 
mula is employed in the main text. With the definition 
L = L-c,r,(dT+ /dr)/[3(dr,/dl)], equation (1) allows equa- 
tion (A7) to be rewritten as 

ef+ - 1 = MT, - T+) + Yo.,d(vo WON/~ (.W 

dh 
= 0. h(.r,O) = 0. (Bl) [I z x-0 

where L is the effective enthalpy of vaporization of the liquid. 
To analyze this problem, an ‘outer expansion’ of the form 

By using the coupling function h= Ho-k&H,+... 032) 

Q = yF,/(vF,wF,)- Yo/(vo~o) (A% can be assumed. Substitution of equation (B2) into equation 
(Bl) and equating terms of equal order of s yields a series of 

(the subscript F, denotes the ith fuel component) in equation outer problems, namely, for n = 0 
(AS), it can be shown that the relation 

e’+ - 1 = [YF,+ + Yo,zvF, ~~,/(~~~~~)l!t&, - YF+l 
aHo 

(AW [ 1 dx **iI 

= 0, H&,0) = 0 (B3) 

is valid when it can be assumed that oxidizer and fuel are 
present in negligible amounts at the droplet surface and in 

andforn= 1,2,... 

the ambient atmosphere, respectively, and where $, is the afL aH" a=H"_, 
mass-flux fraction of the ith fuel component at the droplet dr+.Xdx=dX2+--- 0, 
surface. For gas-phase products that do not enter the liquid 
phase, consideration of the coupling function H,(.s-,O) = 0. (B4) 
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Theory of influence of a low-volatility, soluble impurity 315 

Because of the expected boundary layer at x = 1, the bound- 
ary condition at I = 1 has been neglected. The general solu- 
tion to the leading-order outer problem is 

Ho = H&-In(x)]. (BS) 

To satisfy the boundary and initial conditions for the Ieading- 
order problem, the condition H,, = 0 must be enforced. It fs 
found from eouations (B3) and (B4) that H. = 0 for all n for 
the outer problem. Thhr analys& has treated r of the order 
of unity, instead of cp (defined below) of the order of unity. 
If instead cp is taken of the order of unity the same result is 
obtained even more simply. 

The analysis in the boundary layer can be carried out with 
the ‘stretching’ tra~fo~ation x = 1-6~ (6 = S(e) << I) and 
by assuming that the inner expansion 

h=h,,+eh,+... VW 

is valid. Substitution of equation (B6) into equation (Bl) 
and equating terms of qua1 order of E yields for the first two 
inner problems 

3h$ a2ho 2hh, dht, 
-i,+--, 
2~ a2 $2 II 1 ,7+ho = -1, h&O) = 0, c 2-O 
and 

h,(.z -) co) = 0 (B7) 

ahh, a*h, ah, 
- -(x+2)$, 2+h, r_O =O* G--p-a=-- 

[ I 

h&O) = 0, h,(z-+ co) = 0 (B8) 

where cp = r/s and d = s for a distinguished limit. Solution 
of the leading-order problem is accomplished by taking a 
Laplace transform in the time coordinate to yield the prob- 
lem 

li,(r -+ 00) = 0 (B9) 

where s and &, are defined by the Laplace transform 

o &&,r) = 
i 

e-‘* h,,(rp, z) drp. (BLO) 
0 

where 3 is the Laplace transform of g. An exact solution 
to equation (Cl) can be found (by a Frobenius series 
expansion, say, or by transformation to the parabolic 
cyhnder q~tion), but the complexity of the solution dis- 
courages the inverse Laplace ~~fo~ation from being per- 
formed. An approximate solution to equation (Cl) can be 
found, however, by using WKB analysis [18] for the limit 
s -+ 0, which is amenable to inverse Laplace transformation. 

The solution to equation (B9) is 

/i&,2) = exp[-(J(s+ l/4)+ 1/2)r]/[s(J(s+ l/4)- l/2)]. 
(Bll) 

An explicit inversion for equation (Bll) was not found 
in the tables of Laplace transforms. However, inversion of 
equation (Bll) can be a~mplis~ by noting that the 
function 

To analyze equation (Cl) approximately for E -+ 0, the 
WKB-type representation 

@ = exp(~~-lS”) (C2) 

can be inserted into equation (Cl), yielding 

(e/s)[S,n+aS; +. . .] + (6/s*)[(s;y +2SS& -I-. . .] 

+ [2s/(ax)][&+sS, c.. .] -(xlS)[Yo +as; f.. .] --s = 0 

(C3) 

ex~~-~J(~+~/4)+1/2)~l/E~J~~+l/4~+~)1 (B12) 

has the inverse Laplace transform [20] 

erfc [$J&Y) + J(rp/4)]/(2b- 1) f {(b/2 - I/4) e-’ 

x erfc IrfJ(4~) --JW411- (&I exp W- Wf +rp@’ - l/4)1 

x erfc [zlJ(4@ +~,/~l)l@z - 114) W3) 

for bz + l/4. The inverse transform of equation (Bll) can 
be found by evaluating equation (B13) for the limit b-, 
- 1’2, yielding the leading-order solution 

ho = e-’ (9 --s-f- 1) {I -erfc [&rplrl) -r/.&4&]/2) 

-erfc lsi J&f+ J+PPW+ J(rpl4 

where 6 << 1, and primes denote differentiation with respect 
to x. The transform variable s is taken to be of the order of 
unity, corresponding to intermediate values of T. A dis- 
tinguished limit for equation (C3) is found with 5 = E, yield- 
ing the leading-order problem 

(S@-xs, = 0 (C4) 

which has the solutions So = C,, So = x2/2, where C, is a 
constant. The first-order problem from equation (C3) is 
found to be 

s;+2SQs; e(2/x)so-xS; -s = 0. (CS) 

For So = C, the solution to equation (C5) is St = In (x-‘), 
while for S o =x*/Z the solution to equation (0) is 
St = ln(~‘-~). The pbysj~l~pti~ approbation for the 
solution to equation (Ci) can then be written as 

xexp[-(z2/(p+2z+(p)/4] (B14) s’e a,n-‘+a2x’-3e”f”ti”’ (C6) 

a result verifiable by contour integration in the complex s- where a, and us are constants. For equation (C6) to remain 
plane [2l] or by substitution back into equation (B7). bounded as x -* 0 for the real part Re (s) being positive, the 

The next term (h,) in the inner expansion can be evaluated conditions a, = 0 and Re(s) > 3 must be imposed. Sub- 

by taking the Laplace transform of equation (B8) to yield 
the problem 

d%, dli, 
-+-&& 
dr2 

= -(z+2)[&+ l/4)+- l/2] 

xexp I-(J(~+~I~)+I/~)~I/~~~J(~+~/~~- ~9 4 
iI 1 x+6 = 0, li,(r -b Co) = 0 (BIS) 

r-0 

where /i, is the Laplace transform of ht. At the droplet 
surface (.r = 0) the solution to equation (BlS) is 

R; = (&+ l/4) + l/2)(4&+ l/4) + l)/ 

[4s(s+ l/4)(&+ l/4)- l/2)‘]. (816) 

Taylor expansion of the term [ J(s+ l/4) - l/2] in equation 
(B16) illustrates that s = 0 is a third-order Role, showing that 
h, w p* for Q, - co. The leading-order behavior of equation 
(B16) for s-t 0 is lit %3/s’, indicating that h, ‘5 30*/2 for 
cp-rm. 

APPENDIX C. WKB ANALYSIS 

Laplace transformation in the time coordinate r of qua- 
tion (14) yields the problem 

d# d# -&-s@=o, E-&-B xr, =1/s, 
[ 1 

43 [I xi x-0 

=o (Cl) 
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stitution of equation (C6) (with a, = 0) into the first bound- 
ary condition in equation (Cl) allows the constant az to be 
evaluated, yielding the physical-optics approximation 

8 z .r’-3{exp[(.r’- I)/(ZE)]I/[ES(S-3)]. (C7) 

The inverse Laplace transform of equation (C7) is 

g z [l/(3e)](e3r- l/x’) exp [(x’ - 1)/(2e)]H[r +ln (.x)1 
(C8) 

where H[T + In (x)] is the Heaviside step function, namely 
H[r + In (x)] = I for e’ > l/.x, while ti[r +ln (x)] = 0 for 
e’ < l/.x. Equation (C8) implies that the leading edge of an 
impurity diffusion wave reaches the location .‘c within the 
droplet at the non-dimensional time r = In(l/l), with the 
bulk of the impurity being ‘swept up’ into a boundary layer 
with thickness of order E (in the x coordinate) as the droplet 
surface regresses. Hence, for r >> E, equation (C8) can be 
adequately represented by the function 

g z [1/(3e)](e”- 1) exp [(x’- I):‘(%)] (C9) 

for e -0, since g becomes exponentially small for 
(1 -x) > O(E). 

For r >> I the solution in equation (C9) becomes approxi- 
mately 

g z [e”/(3s)] exp [(s’ - l)/(2~)]. (CIO) 

Equation (CIO) in fact satisfies the differential equation and 
the boundary condition at x = 0 in equation (14) exactly, 
failing only to satisfy the initial condition and the boundary 
condition at the droplet surface. At the droplet surface, equa- 
tion (CIO) gives [r.(dg/d.x)-g]_ = 0. Since g_ >> 1 for r >> I, 
the relation [s(dg/dx) -g] _ = 0 may be taken to represent 
an asymptotic large-time limit for the surface boundary con- 
dition in equation (14). Hence, for large r the solution may 
be expected to be proportional to that given in equation 
(ClO), irrespective of the initial condition, with the constant 
of proportionality determined by the total amount of 
impurity swept up by the droplet as its diameter becomes 
small compared with the initial diameter, that is, by the total 
amount of impurity present in the droplet. 

APPENDIX D. COMBUSTtON OF INITIALLY 
COLD DROPLETS 

The results presented assumed that the initial temperature 
of a droplet was sufficiently high that d-square-law com- 
bustion would occur if there were no buildup of impurity at 
the droplet surface. This restriction could be construed to 
preclude these results from being applicable to situations in 
which droplets are initially cold, such that substantial droplet 
heating must occur before vigorous vaporization begins. 
Results in the literature [13] suggest that for pure single- 
component hydrocarbon droplets of sufficiently low moiec- 
ular weight, combustion (or vaporization in a hot environ- 
ment) can essentially be divided into two periods. The first 
period is characterized by low vaporization rates with rapid 
droplet heating, while the second period is characterized by 
vigorous vaporization with slow heating, with the transition 
between the two periods occurring rapidly. In the first period. 
since vaporization rates are low, the droplet surface does not 
regress appreciably. There is no reason to suspect that small 
amounts of impurity would alter these results. 

Therefore, consider the solution to equation (21) subject 
to O(0) = 8” # 0 for the case in which no impurity is present : 
namely 

(r /r ) h [(e”o- I)/(e” - I J]” 10 I z WI) 
Equation (DI), when coupled with equation (19). yields an 
approximate relation for f, namely 

A/[e’-(I+v)] 2 (I+AIBn)/[I+(eU~~-I)(r,~r,,)‘~]-i. 

W) 
For 8’ << I and le”e- 11 = O(l), the denominator on the 
right-hand side of equation (D2) rapidly approaches unity 
with small decreases in r,,/r,,,, supporting the assumption of 
a stationary droplet surface as initial droplet heating pro- 
gresses. When /?’ = O(l), equation (D2) predicts that f will 
vary significantly from droplet-heating effects over a large 
portion of the droplet lifetime until ](r, $‘r,,) ’ “[e”o - 111‘~ I. 
For /I’ >> I and ]e”n - I ] = 0( 1) equation (D2) predicts that 
droplet heating is slow so that d-square-law behavior will be 
followed for most of the droplet lifetime, until the end, when 
significant heating will occur. Estimates indicate that p’ c< I 
for typical droplet combustion situations at 1 atm. Increases 
in /I’ may occur, for example, as a result of using heavier fuels, 
lowering the oxidizer concentration in the environment, or 
increasing the pressure. 

THEORIE DE L’INFLUENCE DUNE IMPURETE SOLUBLE A FAIBLE VGLATILITE 
SUR LA COMBUSTION, A SYMETRIE SPHERIQUE, DE GOUTTELETTES COMBUSTIBLES 

Rbsum&On analyse I’evolution de la temperature et des profils de fraction en masse de la phase liquide 
pendant la combustion des gouttelettes combustibles composees de melanges miscibles binaires de con- 
stituants a faible et a forte volatilite, avec de petites fractions initiales de madriau i faible volatilitc, ou 
avec introduction lente de matiriau a faible volatilitt dans la phase liquide par absorption de la phase 
gazeuse. La phase gazeuse est supposed etre permanente et la temperature du liquide spatialement uniforme. 
On traite comme un parametre petit le rapport du coefficient de diffusion de la phase liquide a la constante 
initiale de la vitesse de combustion. On developpe les analyses asymptotiques vis-a-vis de ce parametre, et 
les equations de conservation sont integrees numeriquement en obtenant des descriptions de I’histoire de 
la combustion. On montre qu’a la surface de la goutte se forme une couche limite dans laquelle la fraction 
de masse du composant a faible volatilite augmente avec le temps. Les r&hats sont utilisis pour expliquer 
qualitativement des observations de contraction de flamme et de rupture de liquide dans la combustion de 

la gouttelette. 
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THEORIE FUR DEN EINFLUSS EINER LEICHTFLUCHTIGEN L&LICHEN 
BEIMENGUNG AUF DIE KUGELFGRMIG-SYMMETRISCHE VERBRENNUNG VON 

BRENNSTOFF-TRGPFCHEN 

Znsammenfasanng-Es wird die Entwicklung von Konzentrationsprofil und Temperatur in der fliissigen 
Phase w&end der Verbrennung von Brennstoff-Triipfchen berechnet. Der Brennstoff besteht aus bit&en 
mischbaren Vermengungen von leichtfliichtigen und schwertliichtigen Komponenten, wobei entweder das 
anfingliche Massen-Verhlltnis des leichtfliichtigen Materials gering ist oder das leichter fliichtige Material 
durch Absorption aus der Gasphase in die fliissige Phase gelangt. Die Gasphase wird als quasi-ruhend 
angenommen, die Temperatur der Fliissigkeit als rftumlich konstant. Das VerhPltnis von Diffusions- 
koetBzient der fliissigen Phase zur anfanglichen Verbrennungsgeschwindigkeits-Konstanten wird als klein 
betrachtet. Dieser Parameter wird asymptotisch entwickelt. Der zeitliche Ablauf der Verbrennung ergibt 
sich durch eine numerische Integration der Erhaltungsgleichungen. Es wird gezeigt, datl an der Ober- 
l&he des Trijpfchens eine Grenzschicht entsteht, in der das Massenverhiiltnis der leichter fliichtigen 
Komponente mit der Zeit zunimmt. Mit Hilfe der Ergebnisse werden einige Beobachtungen zum Ein- 
schniiren von Flammen und zum Zerteilen von Fliissigkeiten bei der Verbrennung von Trspfchen qualitativ 

erkliirt. 

TEOPMX BJIHXHHX PACfBOPHMOtf I-IPHMECH C HM3KOtr JIETYHECTbIO HA 
C~EPHHECKMCMMMETPH’IHOE CFOPAHHE KAIIEJIb TOI-IJIHBA 

Amorm~-A~a~~~~~pyercn 3aonrotntn npo&tnefi ~accosog norm anuntoii @ax4 H resumparypb~ B 
npottea% CrOpaHHJi KallCAb TOllJTHBa, COCTOBplcTO II3 6HHapHbtX paCTBOpRMbtX CMCCd KOMIIOHWTOB C 

HH3L08 H BblCOKOti JICTyWCl’blO. IIplr MKJIbIX BB'WlbHW MSlCCOBW AOJIKX HH3LOJl~e~O MalQH&7a 

HAH MWlJlCHHOM BBCACHHH 3TOl-0 Ma?epHWIa B ZSHAKylo @33y nOC&PCACTBOM a6COp6LUiH H3 R3OBOti 

@a83b1. IIpennonaraerca, 9To raaoaaa @aaa mutnerca raa3ncrannonapsoU. a rerbateparypa xsuntocrn- 
npOCTpaHCTBCHH0 OAHOpOAHOfi. ~HOUItWle KO3@&WWTa lUll$&‘Si~ XHJlKocTH K KOHCTaHTt CKO- 

pm ~ropa~iw mrraeTCK bw~bm naparm-poac J&u OIUIQLHH~ xaparrepa npouaxx cropawn 

paapa6aruaaerca MCTOA acnxnToTWtecKoro ana~m3a Ha OCHOBC nannor napahmrpa H WicIIenno 
HHTCI-pHpJWU’CK )‘fXIBReHHX COXPZUWHSK. TOKYO. ‘IT0 y IIOBCPXHOCTH KLUUW BO3HHKKCT IlOl-piUirilrm 

cnoii c ysenmmamueticn no spehmm raccosoii nonei mrsnoneT)“Iero ItoMnonetrra. Honyvemibre 
my,,bTaTE, HClIOJlb!3yloTcK ILlIll KWICCTBCHHO~O O~UCHCHHR HeKOTOpbIX J’CJIO~Hif CZWHI ILWMeHa H 

pa3ptma xiiAKOCTH, na6monaeMbtx B npouecce KaIleJlbHOrO CI’OFMlHHK. 


